Winchester Cathedral: Safe, Sound, and Secure
A Centenary Tribute to William Walker the Diver
by David Farthing

David Farthing is a retired civil engineer and a Winchester Cathedral Guide, with a special interest in the underpinning project in which William Walker played a vital part at the beginning of the 20th century.

Recent Recognition for The Winchester Diver

In March 2018, the author was privileged to attend a short ceremony at the one-time home of the diver, formerly 112 Portland Road, South Norwood, when a commemorative plaque was unveiled by the Dean of Winchester Cathedral, Catherine Ogle. (The houses were renumbered in the 1950s.)

The plaque reads simply William Walker 1869-1918 “The deep sea diver who saved Winchester Cathedral” while living here

Context

In September 1911 when his extraordinary years of work as a diver on the preservation project were nearing completion, William Walker was interviewed by the Hampshire Observer. [1] The reporter asked him “Have you had any curious experiences?” The reply was typical of this modest, robust and remarkable man:

“Nothing to speak of, unless the stoppage of my air pump twice can be regarded as curious. It certainly came about in a curious way. . . . Somebody each time called “stop the pump”, (a second pump was always at work for removing water) and my man thought it meant MY air pump and obeyed orders. What did I do?

I came up to the surface as soon as I could, and suffered no ill effects. A man can live in a diver’s dress for ten minutes after his air pump has stopped.”

Fig 4 William Walker descending in his diving suit
Photo: Winchester Cathedral Archives
There is no doubt that William Walker, who became known as the Winchester Diver, was the hero of the project. His skill, bravery, and tenacity whilst labouring for over 5 years in the gloomy waters beneath the foundations of Winchester Cathedral, over one hundred years ago, certainly caught the public’s imagination not only in Winchester, but across the country and beyond. This year, 2018, marks the 100th anniversary of his death on October 30th 1918, during the Spanish flu epidemic at the end of the First World War. So it is an appropriate time to consider the legacy of this unique undertaking and the crucial role played by William Walker.

Over the years much has been written about this feat of engineering. In particular, the book by John Crook and Ian Henderson [2] provides full and comprehensive coverage of the entire enterprise and is now accepted as the standard reference on the subject. To avoid covering too much ground already familiar to many, this article adopts a fresh approach by highlighting the evidence still visible both within and outside the Cathedral. The reader is taken around the outside and through the Cathedral, stopping at a number of key locations. To assist with a fuller understanding of the work undertaken, included in the text are responses to the most common questions asked by the many visitors who are intrigued and fascinated by the story of the Winchester Diver.

Summary Outline of the Underpinning Project and Walker’s Achievements

In January 1905 the Dean, William Mordaunt Furneaux, lost no time in responding to the report submitted by the Cathedral Architect, John B Colson, highlighting the alarming condition of parts of the Cathedral fabric, notably the south presbytery aisle and the south transept. He called in the eminent Diocesan Architect Thomas Jackson, who in turn recommended seeking advice from Francis Fox, a leading consulting engineer and qualified diver.

![Fig 5](Winchester Cathedral Archives) Contemporary illustration of William Walker laying bags of concrete below the foundations

To avoid excessive pumping, Fox devised an ingenious underpinning scheme whereby drifts were excavated down to the peat above the layer of solid gravel. When the peat layer was breached, water held under pressure in the gravel rose to flood the excavation, and a diver descended into the water to remove the remaining peat and and lay bags of dry mix concrete in its place. The bags of concrete effectively sealed the gravel so that the water could be pumped out of the drift and masons could go down to build a new foundation on the hardened bags of concrete, connecting up with the underside of the medieval foundation. The diver who was chosen for this challenging task was...
William Walker, the chief diver from the leading firm of Siebe Gorman. Walker, working for eight hours each day, laboured for five and a half years in hazardous conditions placing 26,000 bags of dry mix concrete beneath the existing cathedral foundations.

On completion of the work King George V and Queen Mary, and many dignitaries attended the Thanksgiving Service on St Swithun’s Day, 15th July 1912. Walker was presented to the King.

The Daily Express reported, “If one could have cheered in the dim religious place, the people would have carried their homage to the diver. He was standing there unobtrusively, a burly, broad shouldered figure in a frock coat with a silk hat in his hand, blushing like a great schoolboy when the Archbishop praised him to the King and Queen.” [3]

Walker said afterwards: “It made me feel uncomfortable to be spoken of in the pulpit before that host of people, but I daresay they didn’t know I was the man His Grace was talking about.”

On 19th December that year, the King conferred on Walker The Royal Victorian Order.
Visible Evidence Outside the Cathedral

Location 1, Path beside No 1 The Close
In the photograph above (Fig 9), taken in 1906, the architect John Colson, on the steps by the Bishop’s Door, points towards the white plumb line indicating the extent of the tilt of the masonry.

The best place to view the settlement of the building (point 1a) is from the south of the eastern extension, built by Bishop de Lucy in the early 1200s, as this is where the ground conditions are at their very worst. Even though the builders laid beech logs beneath the foundations to spread the load of the massive walls, this end of the Cathedral had sunk by up to 2ft 6inches (762mm) and also, the south presbytery wall leant outwards by approximately 2 feet (610mm).

![Fig 10 Sloping east end today](Photo: Simon Newman)

The fact that the far east of the Lady Chapel (point 1b) shows little sign of settlement is because that end of the chapel was rebuilt in the 15th century, to the same floor plan as previously on its original foundations. Consequently the peat underneath might have been compressed and hardened under the weight of the original walls.

![Fig 11 Large cracks in west wall of south transept repaired with Portland Stones](Photo: Peter Innes)

Large cracks, repaired by bridging them with horizontal Portland stones are easy to see. (Fig 11) The crack running full height to the right of the Bishop’s Door, viewed from location (c) marks the general area where the construction of the retrochoir commenced, thereby extending the building onto poorer ground. It was from here eastwards where the building began to sink. Some people describe this point as where the Cathedral had “broken its back”. Many other large crack repairs with Portland stone can be seen on the walls of the south transept.
Large plates and nuts viewed from positions (c) and (d) on the outside wall anchor tie bars running across the inside of the retrochoir and south transept stretching right through to the far walls to help keep the walls upright. (Figs 12.1 and 12.2) Tie bars themselves can be seen spanning the retrochoir at location 6. (Fig 36, p.17)
Inside the slype, substantial Portland stone buttresses (Fig 13) support the south wall of the south transept. The subsidence here was as bad as at the east end, the building having sunk by over 2 feet (610mm) and the gable was leaning out of the vertical by 4 feet 7 in (1.4m), about one third that of the leaning tower of Pisa.

On seeing the evidence of all this subsidence visitors often ask why the Cathedral was built in this problematic location on a flood plain. The possible answer is that even if Bishop Walkelin had been aware of the poor soil conditions, it is most unlikely that he would have considered any other location. The prestigious and historic nature of the site adjacent to the Saxon minsters, close to the river for a water supply, was the ideal location to build his new cathedral opposite the royal palace.

The chosen site for the Cathedral is on the original flood plain of the river Itchen, where the soils comprise marl, clay, silt and variable thicknesses of peat. Not only did this layer of peat deep below the water table trouble the medieval builders, its damaging presence has continued to test the ingenuity and skill of those charged with the responsibility of maintaining and caring for our great cathedral throughout the years.

It appears Fox was fully aware of this. In his first report to Jackson on 27th June 1905, he states “it is doubtless true that the building has been moving freely for nearly 700 years.” [4]

Beneath this peat, but well below the water table at a depth of about 20 feet (6.1m), there is a layer of good solid gravel. As a result of the success of the underpinning project, it is on this sound layer that the Cathedral is now firmly founded.
The ten buttresses supporting the south nave wall are the only new construction to form part of the preservation work and provide the most evident legacy of the works.

The removal of the cloisters soon after the Reformation rendered the wall of the south nave aisle particularly vulnerable to outward movement, so in addition to underpinning this wall in a similar fashion to the rest of the Cathedral, as an additional precaution, Thomas Jackson, the Diocesan
Architect, designed these ten elegant buttresses as extra support for the wall. They are not solid like Wykeham’s buttresses on the north nave wall, but double arched, and the footway along the side of the building runs through and under them. The use of arched buttresses adds lightness to the general effect as do the pinnacles surmounting each of them, and the weight above the lower arch provides a downward compressive force to the buttresses.
The buttresses each cost 550 guineas; seven of these were funded by special contributions, each recorded on the underside of the arch. The two furthest to the east were the gift of the Mothers’ Union in memory of their founder Mary Sumner and her husband George Henry Sumner, Suffragan Bishop of Guildford. The other five were built with donations in memory of John Keble, Old Wykehamists, Bishop Thomas Ken, and two other private individuals.

Visible Evidence of the Works Still to be Seen Inside the Cathedral

Location 3, North Nave Aisle Wall

During the remodelling of the nave to the Gothic style towards the end of the 14th Century, Wykeham constructed buttresses along the outside of the north nave wall to provide additional support to the nave vaulting. However, during the excavations for the underpinning project a surprising discovery was made in 1906 about the foundations for these buttresses.
In Francis Fox’s autobiography [5] he states “These buttresses were built of fine massive masonry, but unfortunately, so far from giving strength to the wall they did the reverse, owing to their not being taken down even to the level of the original Norman Foundation. They therefore hung on the wall and increased the danger of collapse”. It seems possible that Wykeham’s intention may have been more about stylistic fashion than stability.

In spite of the observation by Fox, the tell-tales that still exist on the north wall, many dated 1906, show little sign of cracks that would have indicated settlement. This wall appears to be in as good condition as any in the Cathedral; it is known that the peat layer thins out both westwards and
northwards, and at this point the medieval builders had managed to drive their piles through the peat layer into the gravel itself. [2]

Location 4, North Transept

![Figure 21 North transept pier showing inward lean of lower section](image-url)
Photo: Peter Innes
This is one of the best places to see evidence that settlement must have been taking place in some locations as construction was proceeding in the 11th century. Firstly, lower sections of some piers lean inwards but not the entire pier, the cause probably a combination of settlement and lateral thrust from vaulting of the Epiphany Chapel on the western side, and similarly from the vaulting of the corresponding chapels on the eastern side. This might indicate that the piers began to lean as they were being constructed, something that the builders were able to correct as they continued building upwards.

Secondly the differential settlement of the raised pier plinths on the floor can clearly be seen, some having sunk by as much as one foot (300mm) down to be level with the floor, whilst others remain about a foot above the floor, the level at which they were originally built. The fact that there are no significant signs of cracks in any of the three levels of arches supported by the piers above suggest that parts of the foundations had already sunk during construction and become solid and stable as the walls above them were rising.

This appears to be later confirmed by Fox. When dealing with the north transept, his report dated 31st August 1908 [6] states “the condition of the peat under the NW corner was highly compressed and did not seem susceptible of further movement…..”

The fact that the tower, rebuilt after its collapse in 1107, has stood for almost 900 years may be partly due to improved building techniques but also partly to the pre-compression of the underlying peat by the load imposed by the original tower.

Location 5, Crypt

![Plan of Crypt](image)
The preservation of a lump of hardened peat (Fig 23) in the display case at viewing point (5a) serves as a reminder of the problems of building on ground with an underlying layer of peat.

The linear marks on this hard lump indicate that Walker may have been using a pick axe or similar tool in some places.

Fig 23 Lump of peat extracted by Walker from beneath foundations
Photo: Simon Newman

William Walker is portrayed using a pick axe in a carving decorating the stand of a dinner gong, made by workmen on the site, using wood from the Cathedral’s foundations, and given as a wedding present to Philip Stubbs and Marjorie Furneaux, daughter of the Dean, William Mordaunt Furneaux.

In its natural state peat is a soft, often saturated, compressible organic material. The application of an external load such as the building of a foundation on the soil above can compress and harden the
peat beneath by squeezing out the water to the point where it can, in certain circumstances, eventually form a sound foundation for most structures. The rate of compression as the water is squeezed out depends on a number of factors including the load itself, the thickness and moisture content of the layer and the permeability of surrounding soils. This may have been a factor in the inconsistent and indeterminate nature of the subsidence of a number of parts of the Cathedral throughout the centuries.

However, the settlement at the east end was so severe that visitors often ask if something changed to cause the sudden worsening of the subsidence at the turn of the century. In his report dated 27th June 1905 [4] already mentioned, Fox continues “...Freshly fractured stonework, actually clean and free from dust, indicates very recent movement...”, so it seems certain something was suddenly changing.

It is difficult to disagree with the suggestion that variations in the water table might have been the cause. For instance in the report [4] quoted above, Fox points out that the sanitary authorities of the City had constructed drains at such a depth as to lower the level of water considerably in the foundations. City guides often attribute the Cathedral foundation damage to the new buildings with basements erected in the city centre in the Victorian period creating diversions and possible erosion of substrata.

In his article entitled “Winchester Cleansing Streams” [7] John Crook describes the extensive drainage works carried out in the latter part of the 19th century, some of which were close to the east end of the Cathedral. It is just possible this work could have impacted on the water table and hence affected the foundations as explained below.

In the crypt is a slice of beech log (Fig 24) which is a sample taken from one of the logs laid by the builders of De Lucy’s eastern extension; these were laid in wide foundation trenches immediately prior to constructing the foundations, in order to spread the load of the massive walls over what was known to be poor ground. The fact that the underpinning project did not become necessary until the start of the 20th century approximately 700 years later, is a remarkable tribute to the medieval builders’ recognition of the problem and their clever solution.

![Fig 24 Slice of beech log from beneath east end foundations](Photo: Simon Newman)

The variations in water table mentioned above could have been damaging these logs and hence causing settlement of the foundations in the late Victorian period. In his autobiography [5] Fox states “The Presbytery Walls were built on beech logs, whole trees, laid horizontally resting in some places on a second layer of trees. Some were rotten, others as sound and good at heart as ever....”
In his MSc project report [8] reviewing ground conditions below the foundations, Stephen Wilkinson considers this aspect, suggesting that drainage of the water meadows and other changes affecting the water table could have caused some of the logs to rot.

There is a large crack (Fig 25) behind the Antony Gormley Statue, seen from viewing point 5(b). This is one of the largest still to be seen today.

Soon after the Cathedral was constructed, the crypt periodically began to flood. In an attempt to overcome this problem a large quantity of loose rubble and soil was brought in and placed on the floor. This remained in place until the 1880s when Dean Kitchin arranged for its removal. The chantry chapels of Beaufort and Waynflete, founded in the fifteenth century, had been built on top of the rubble so the rubble under the chantries was left in place.

About the time of the underpinning, it was felt prudent to ensure the stability of these two chantry chapels by constructing brick retaining walls around the material on which the foundation of these chapels rested (Fig 26.1 and 26.2), viewed from location 5(c).
Location 6, South East Corner of Retrochoir

This is the best place inside the Cathedral to see evidence of the most serious area of subsidence. The floor falls steeply away to the south east corner of the retrochoir. The severity of the sloping floor can be demonstrated by standing close to the Bishop’s Door and dropping a ball which will roll with increasing speed down the slope into the corner where the floor has sunk by almost 2 feet (610mm). (Fig 28)

From location 6 the outward lean of both the south presbytery aisle and front face of the Langton Chapel (Fig 29) can be clearly seen.

Fig 28 Sloping floor at east end of Cathedral
Fig 29 South wall leaning outwards
Photos: Simon Newman

Fig 30 Tie bars in retrochoir
Photo: Julie Adams
Stretching across the full width of the retroquire at high level can be seen the metal tie bars (Fig 30) installed at the start of the project to improve stability of the walls by tying them together.

Just beside the Bishop’s Door close to floor level can be seen the repair (Figs 31 and 32) of one of the largest cracks. It was from this point eastwards that the worst settlement occurred.

All four photos by Simon Newman
It is indeed most fitting that the Winchester Diver’s statue should be placed here where the sloping floor and walls can clearly be seen. The building is in effect “frozen in time” in its sunken but now stable position, a reminder of the dramatic consequence of the subsidence and the successful result of the underpinning project.

The contemporary diver’s helmet, weighing 30 lbs (13.6kg) was presented in memory of William Walker by the Directorate of Marine Services (Naval) on 8th May 1990. On the left side can be seen the air hose connection and on the right the valve for controlling the air flow from the pump and the life line connection.

In the south west corner of Beaufort’s chantry chapel there is a large group of tell-tales (Fig 33) monitoring the work done in the crypt to ensure the chantry foundations were secure.

Location 7, Entrance from the Nave to the South Transept

The gates at the entrance from the south nave aisle to the south transept (Fig 35) were installed in memory of Dean Furneaux who was the Dean for the duration of the underpinning project.
There is not the slightest doubt that William Walker as the central figure, and Jackson and Fox, the brains behind the operation, all deserved their awards, but it is important not to forget the Dean, William Mordaunt Furneaux. On receiving the Cathedral Architect’s alarming report of January 1905, he called in the Diocesan Architect and took full responsibility for managing the project and seeing it through to its successful conclusion. The concept of fundraising at that time was in its infancy, and Dean Furneaux’s leadership was paramount in launching and managing what is believed to be the first ever major fundraising project of such scale, equivalent to around £10 million in today’s money.

Location 8, West End

A fitting place to finish any tour relating to the Winchester Diver is here at the west end where a plaque (Fig 36) outlines the details of the project and lists all those who paid a prominent part in its success.

It is clear that the architect, Thomas Jackson, and engineer, Francis Fox, openly admired the dedication of Walker and acknowledged the huge contribution he made to the success of this extraordinary project.

Fig 36 (left) Plaque at west end Photo: Simon Newman

Beyond the west end, outside the refectory, there is a bust of William Walker, by Norman Pierce.

Fig 37 (right) Bust of William Walker by Norman Pierce Photo: Julie Adams
The Unique Role of William Walker

For seven to eight hours a day, five to six days a week, for five and a half years William Walker laboured in dirty, murky water, totally alone in pitch darkness, in atrocious and potentially dangerous conditions beneath the sinking foundations. As pointed out by Dr John Bevan, founder chairman of the Historical Diving Society, in deep sea diving terms, certain elements of Walker’s work were not particularly onerous; the work was at no great depth, there were no tides and no currents to contend with, an ever present danger on many diver undertakings.

It is other aspects which set Walker’s work apart and renders it unique in the annals of diving and underpinning. The principal hazard was the danger of collapse of the shoring of the pits and drifts in which he worked. However, Walker was fulsome in his praise for the high standard of the preparatory work and attributed the total absence of any accidents to the safe installation of the shoring. [1]

Most remarkable of all was Walker’s commitment and tenacity in seeing through what was surely a monotonous, tedious, and repetitive task. At the start, two divers worked together, but his equally well qualified colleague, Edwin Albert Rayfield, was soon moved on to other tasks.

Walker had a solitary task and other members of the workforce could not physically see what he was achieving hour by hour. A bricklayer or mason can usually show others his day’s work, but this was not a pleasure that could be enjoyed by Walker. Only the Engineer Francis Fox ever experienced any first-hand knowledge of Walker’s work and even he never “saw” it but only felt his way around bags of concrete carefully placed by Walker. To have seen the work through to its successful completion exhibits an extraordinary degree of determination and dedication. To quote the concluding sentence from John Crook and Ian Henderson [2]:

It is our hope that he will always be remembered with due affection as “The Diver who saved Winchester Cathedral with his own two hands”.

Conclusion

So is the Cathedral now “Safe, Sound and Secure”? There is not the slightest doubt that the answer to this frequently asked question is a resounding “YES”.

Firstly, let us consider the checks and assessments that took place immediately after the completion of the work. In a letter to the Dean and Chapter dated 29th March 1912, [9] Fox said:

“I desire at the outset to say that in underpinning of such an extensive character as that which has been executed under the Cathedral, however carefully it may have been done, it is inevitable that there should be a slight settlement of the building on its new foundations.

“The work was done with the utmost care, the masonry and brickwork of the new foundations being tightly keyed up to the underside of the old work by driving in slates bedded in cement, every interstice being filled up with mortar. The work was so well done that I anticipated that the settlement would probably not exceed a quarter of an inch and from a careful examination I do not think it amounts to as much. There are in various places the finest hair cracks, and in the soffit of the arches of a few of the windows, these cracks maybe as wide as the thickness of a penny piece, but most of these occurred during the underpinning.”

Fox continues:

“To summarise, briefly, the conclusions at which I have arrived consequent to my investigations, I am of the opinion that these small cracks are due to the Cathedral coming to rest on its new foundations.
foundations and that none of these are of importance, that no movement is taking place which
necessitates the retention of the timber struts to the south transept, that no perceptible movement is
taking place in the piers of the tower or of the nave.”

Francis Fox was clearly confident that the work would stand the test of time and this has proved to
be the case. The condition of the building continues to be carefully and continually monitored,
primarily through the quinquennial inspections.

The transcript of a talk given by two guides in 1998 [10] records information gleaned from the
Cathedral Architect in post at the time, Peter Bird, who confirmed that regular checks of the
Cathedral over many years had shown that there had been no further movement after the 1906-1911
work was completed, and that checks were now carried out at less frequent intervals. He indicated
that Winchester Cathedral is one of the few buildings in Winchester that is not sinking!

In his paper, Gwilym Roberts [11] described how in 2006/7 a team from Imperial College
investigated the work that had been carried out a century earlier with a view to ascertaining whether
the foundations had subsided since 1912 and if so, by how much, and also whether the foundations
were still subsiding. Amongst their conclusions the team stated that the maximum settlement that
had occurred since a previous measurement in 1988 was 2mm and that the cathedral is now stable.

The current Cathedral Architect, Nick Cox, still monitors the building for any sign of movement.
There are tubular shaped sensors aimed at specific targets measuring any movement of identified
 cracks such as the instrument high on the south presbytery aisle wall. (Fig 37) In addition there are
tiny reflective prisms embedded in walls (Fig 38), to assist with monitoring with great accuracy the
dimensions of the main elements of the building. In January 2018 he reported [12] that the
monitoring set up to give prior warning of any movement during the structural work involved in
installing the lift in the south transept showed no significant movement of the building. In addition,
he said that the regular monitoring of the stability of the entire building indicated no movement was
taking place and he concluded by saying that he wished all the church buildings for which he was
responsible were as safe, sound and secure as Winchester Cathedral!

This must surely be the ultimate tribute to all those who strove to secure the foundations of our
great Cathedral and especially William Walker, the Winchester Diver, whose death on October 30th
1918 we are commemorating this year.
He is always formally remembered by name in the prayer used at the annual Festival Evensong of the Friends of Winchester Cathedral:

“For William Walker, diver, and all who in diverse ways have toiled to preserve this cathedral church through many generations”

Acknowledgements

I would like to thank the following people and acknowledge their invaluable assistance during the preparation of this article:

1. David Rymill, Cathedral Archivist, who assisted me patiently in searching the extensive resources at Hampshire Record Office.

2. Dr John Crook, Winchester Cathedral Archaeologist, and co-author of “The Winchester Diver: The Saving of a Great Cathedral”, for his helpful advice and guidance.

3. Jo Bartholomew, Cathedral Curator and Librarian, Winchester Cathedral, who arranged for me to photograph some of the William Walker memorabilia in the Cathedral collection.

4. Dr John Bevan, former chairman of the Historic Diving Society, and Gary Wallace Potter, the Society Secretary for useful advice especially on technical aspects of diving.

5. Nick Cox, Cathedral Architect, for updating me on the current state and condition of the Cathedral.

6. Peter Innes, fellow guide and a member of the William Walker team of special interest guides for advice and support.

7. Simon Newman, fellow guide at Winchester Cathedral, for providing the plans and many of the excellent photographs.

8. Julie Adams, fellow guide and editor of Record Extra, for encouraging me to write this article and for suggesting new perspectives on which to base it, for taking some of the photographs, and for providing much appreciated guidance throughout the preparation process.

References

 DC/E3/6/1/3_Jackson_1_163: Hampshire Observer : Sept 2nd 1911
 (Note: Hampshire Chronicle has been in continuous production from 1722 until the present day. Hampshire Observer was a separate paper in production from 1877 but in 1957 became incorporated into Hampshire Chronicle)

3. Daily Express July 16th 1912 DC/E3/4/10/82

5. Fox, Sir Francis, Sixty Three Years of Engineering, Scientific and Social Work, John Murray, 1924

9. WCA: WWC: DC/E3/6/1/3_1_171 Fox letter to the Dean and Chapter 29th March 1912

10. Fox, David, and Kirkby, Diana, *Saving the Royal Church of the Nation’s Childhood*, 1998 (transcript of a talk given to Winchester Cathedral Guides)

12. Verbal report from Nick Cox, current Cathedral Architect, in a private conversation with the author

Footnote

William Robert Walker died aged 49 at his home, 112 Portland Road, South Norwood, on 30th October 1918, of acute lobar pneumonia during the Spanish flu epidemic which swept through Europe at the end of the First World War.

On hearing of his death, the King wrote to Sir Francis Fox expressing regret at the death of “one who did so much useful work in connection with Winchester Cathedral” and expressing sympathy with his family. [Norwood News 8th November 1918]

His funeral, attended by Sir Francis Fox, was held at St Marks Church; the interment took place at Elmer’s End Cemetery on 6th November 1918 but the simple memorial made no mention of the fact that he was the diver who “saved Winchester Cathedral”.

Over the years the grave fell into disrepair and was in a dilapidated state. Under the leadership of Dr John Patton, a guide at Winchester Cathedral, £1200 was raised for its restoration.

William Walker’s refurbished grave at Elmer’s End Cemetery

Photo: John Hickman
The rededication of the grave took place on Saturday 29th October 1989, and the occasion was attended, amongst others, by a number of the Cathedral guides.

At the graveside, the new tablet was unveiled by William Walker’s eldest surviving grandson, Richard Nettley. This was followed by a brief but moving service in the cemetery chapel at which the Dean of Winchester, the Very Reverend Trevor Beeson, officiated.

Appendix: William Walker Memorabilia

There are a number of public places where William Walker memorabilia can be viewed, and there are still a large number of artefacts that are privately owned. Images of items in the Cathedral collection are reproduced with permission of the Dean and Chapter.

1. Carved cross
 Cathedral collection
2. Stone retrieved by Walker from the gravel layer in 1907
 Cathedral Collection
3. Model of mortuary chest
 Cathedral collection
4. Statuette of William Walker Historical Diving Society
5. Wooden cupboard in private ownership
6. Wording on cupboard shown in (5)
7. Dean Furneaux’s signature on cupboard in (5)

Photo attributions: No.4 Dr John Bevan, All other images on this page were taken by the author
The King Alfred public house in Winchester has on display part of the original stall which was set up outside the Cathedral, selling souvenirs carved from the wood taken from under the Cathedral.

![Image of the stall](image)

Part of the stall (shown below) selling souvenirs outside the Cathedral, in King Alfred public house
Photo: Simon Newman

The Market Tavern was renamed The William Walker in recent years and is full of 20th century diving memorabilia and framed photographs of William Walker.

The dining room at The Wessex Hotel is named The William Walker Restaurant.